	YEAR 12 MATHEMATICS SPECIA SEMESTER ONE 2018 TEST 1: Complex Numbers	LIST
WESLEY COLLEGE By daring & by doing	Name:	
Wednesday 7 March		
Time: 55 minutes	Mark	/46= %
• You are permitted to	neatly in the spaces provided. Show all work use the Formula Sheet in both sections of the e A4 page (one side) of notes in the calculator a	test.
Calculator free section	n Suggested time: 25 minutes	/22

Question 1 (6 marks)

$$f(z) = z^3 - 5z^2 + 17z - 13$$

- a) Show (z-1) is a factor of f(z)
- b) Re-write f(z) = (z-1)Q(z) + R

c) Hence find all the roots of the equation, giving your answers in the form a + ib where a and b are integers.

[2]

[1]

Question 2 (9 marks)

The complex numbers $z_1 \, z_2$ and z_3 are given by

$$z_1 = 7 - i$$
 $z_2 = 1 + i\sqrt{3}$ $z_3 = a + ib$

where a and b are real constants.

a) Given $|z_1 z_3| = 50$, find $|z_3|$

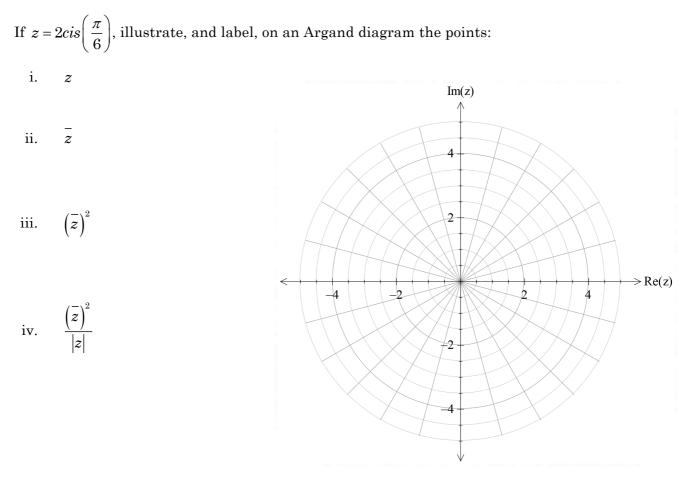
b) Given also
$$\arg\left(\frac{z_2}{z_3}\right) = \frac{7\pi}{12}$$
, find $\arg(z_3)$

c) Determine the values of *a* and *b*.

d) Show that
$$\frac{z_1}{z_3} = \frac{1}{5} (4+3i)$$

[3]

[2]

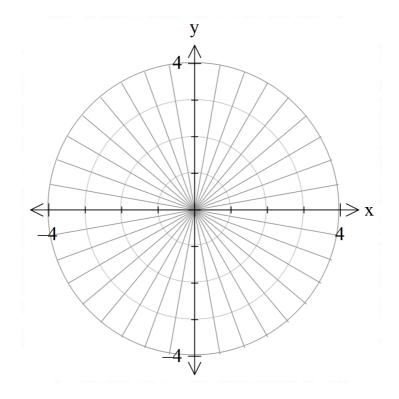

[2]

[2]

Question 3 (3 marks)

Given w = a + ib, find the values of a and b when 2w - 3w = 3 - 20i.

Question 4 (4 marks)



Calculator assumed section

Suggested time: 25 minutes

Illustrate the solutions to the equation $z^3 = -4 + 4\sqrt{3}i$.

[6]

Question 6 (5 marks)

The complex number z is given by $z = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$.

- a) State z in the form $\lambda(1-i\sqrt{3})$, where λ is rational number you should find.
- b) State the modulus and argument of *z*.
- c) Hence, or otherwise, find the modulus and argument of $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^4$

Question 7 (5 marks)

Given that |z+1-4i| = 1

a) sketch, in an Argand diagram, the locus of *z*.

b) find the maximum value of arg(z) in degrees to one decimal place.

[2]

[2]

[1]

[2]

Question 8 (9 marks)

The complex number w = x + iy, where x and y are real, satisfies the equation

$$|w+1+8i| = 3|w+1|.$$

The complex number w is represented by the point P in the Argand diagram.

a) Show that the locus of P is a circle and state the centre and radius of this circle.

[3]

Question contd on next page ...

- b) The locus $|w| = \left| w \frac{14}{5} \right|$ is represented on the Argand diagram below.
 - i. Explain why the locus is as shown.

- $\operatorname{Im}(z)$
- ii. Add the locus of *P* to the diagram.

- [2]
- c) Find the complex numbers corresponding to the points of intersection of these loci, giving your answers in the form a+ib, $a,b \in \ldots$

[2]